Robust liquid-infused surfaces through patterned wettability.

نویسندگان

  • Jason S Wexler
  • Abigail Grosskopf
  • Melissa Chow
  • Yuyang Fan
  • Ian Jacobi
  • Howard A Stone
چکیده

Liquid-infused surfaces display advantageous properties that are normally associated with conventional gas-cushioned superhydrophobic surfaces. However, the surfaces can lose their novel properties if the infused liquid drains from the surface. We explore how drainage due to gravity or due to an external flow can be prevented through the use of chemical patterning. A small area of the overall surface is chemically treated to be preferentially wetted by the external fluid rather than the infused liquid. These sacrificial regions disrupt the continuity of the infused liquid, thereby preventing the liquid from draining from the texture. If the regions are patterned with the correct periodicity, drainage can be prevented entirely. The chemical patterns are created using spray-coating or deep-UV exposure, two facile techniques that are scalable to generate large-scale failure-resistant surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional Open Microfluidic Devices by Tuning the Wettability on Patterned Superhydrophobic Polymeric Surface

We present a simple and economical method to produce a potential open microfluidic polymeric device. Biomimetic superhydrophobic surfaces were prepared on polystyrene using a phase separation methodology. Patterned two-dimensional channels were imprinted on the superhydrophobic substrates by exposing the surface to plasma or UV–ozone radiation. The wettability of the channels could be precisely...

متن کامل

Morphing and vectoring impacting droplets by means of wettability-engineered surfaces

Driven by its importance in nature and technology, droplet impact on solid surfaces has been studied for decades. To date, research on control of droplet impact outcome has focused on optimizing pre-impact parameters, e.g., droplet size and velocity. Here we follow a different, post-impact, surface engineering approach yielding controlled vectoring and morphing of droplets during and after impa...

متن کامل

Bioinspired TiO2 Nanostructure Films with Special Wettability and Adhesion for Droplets Manipulation and Patterning

Patterned surfaces with special wettability and adhesion (sliding, sticky or patterned superoleophobic surface) can be found on many living creatures. They offer a versatile platform for microfluidic management and other biological functions. Inspired by their precise arrangement of structure and chemical component, we described a facile one-step approach to construct large scale pinecone-like ...

متن کامل

Self-healing, Slippery Surfaces for HVAC&R Systems

Enhancing water shedding behavior on aluminum surfaces is important in the design of energy-efficient heat exchangers. In this work, a method for fabricating oil-infused aluminum surfaces for HVAC&R systems is described for the purpose of exploiting the slippery nature of such surfaces, thereby improving the overall surface wettability. A microstructured, porous aluminum fin stocks with heterog...

متن کامل

Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates.

Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 11 25  شماره 

صفحات  -

تاریخ انتشار 2015